Week 7

7.1 Classification of cyclic groups

Example 7.1.1. Let H = {rq, 71,79, ...,7,_1} be the subgroup of D,, consisting
of all rotations, where 7, denotes the anti-clockwise rotation by the angle 27 /n,
and r;, = r¥. Then, H is isomorphic t0 Z,, = (Z,, +n).

Proof. Define ¢ : H — Z,, as follows:
o(r) =k, keL

where & denotes the remainder of the division of k by n.
K/

The map ¢ is well defined: If rf = r¥’, then r{~* = e, which implies that
n = |ry| divides k — k'. Hence, k = k' in Z,.
For i, j € Z, we have rir] = r™/; hence:

o(rir]) = o) =T+ j =i+nj = d(r}) +n o(r]).

This shows that ¢ is a homomorphism. It is clear that ¢ is surjective, which then
implies that ¢ is one-to-one, for the two groups have the same size. Hence, ¢ is a
bijective homomorphism, i.e. an isomorphism. ]

In fact:

Theorem 7.1.2. Any infinite cyclic group is isomorphic to (Z,+). Any cyclic
group of finite order n is isomorphic to (Zy,, +).

Proof. Write G = (g).
Suppose |G| = oo. Consider the map

67— G, kg~

¢ is a homomorphism because ¢ (ki + ko) = ghth2 = gk . gk2 = (ky) - ¢ (ko).
¢ is injective because ¢(k;) = ¢ (ko) implies that g** = g*2 which forces k; = ky
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as |g| = oo. ¢ is surjective because G is generated by g. We conclude that ¢ is an
isomorphism.
If |G| =n < oo, Claim 2.1.2 says that we can write

G={g9)={e,9.9°...,g" '}

Consider the bijection '
O0:G— Ly, g i

We have
¢( ¢ 21+12

. Zl+22 if i1 + io < n,

- ““2 ") ifip i >n

_ Zl+22 ifi1+z'2<n,

21—1—22—71 1f21—|—222n

= 6lg") +0(9).

SO ¢ is an isomorphism. ]

So for any n € Z U {oc}, there is a unique (up to isomorphism) cyclic group
of order n. In particular, we have the following:

Corollary 7.1.3. If G and G’ are two finite cyclic groups of the same order, then
G is isomorphic to G'.

For example, the multiplicative group of m-th roots of unity

Un={2€C:2" =1} ={1,(n, 2, ..., "1}

where (,, = €2™/™ = cos(2m/m) + isin(27/m) € C, is cyclic of order m. So it
is isomorphic to Z,,, and an isomorphism is given by

¢: Ly —> Un, ks CE.

7.2 Rings

Definition. A ring R (or (R, +,-)) is a set equipped with two binary operations:
RxR—=R

which satisfy the following properties:
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1. (R,+) is an abelian group.
2. (a) The multiplication - is associative, i.e.
(a-b)-c=a-(b-c)

forall a,b,c € R.

(b) There is an element 1 € R (called the multiplicative identity) such that
l-a=a-1=aforalla € R.

3. (Distributive laws:)

(@ a-(b+c)=a-b+a-cand
(b) (a+b)-c=a-c+b-c

forall a,b,c € R.

Example 7.2.1. The following sets, equipped with the usual operations of addition
and multiplication, are rings:

1. Z,Q,R, C.

2. Zz], Q[z], R[z], C[z] (Polynomials with integer, rational, real, complex
coefficients, respectively.)

3. QW2 = {3 ar(V2)F tar € Qn e N} = {a+bv2: a,b € Q}.
4. For a fixed n, the set of n x n matrices with integer coefficients.
5. Cla,b] = {f : [a,b] — R : f is continuous.}
6. (N, +, ) is not a ring because (N, +) is not a group.
Remark. e For convenience’s sake, we often write ab for a - b.

e In the definition, commutativity is required of addition, but not of multipli-
cation.

e Every element has an additive inverse, but not necessarily a multiplicative
inverse. That is, there may be an element @ € R such that ab # 1 for all
beR.

Proposition 7.2.2. In a ring R, there is a unique additive identity and a unique
multiplicative identity.
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Proof. We already know that the additive identity is unique.

Suppose there is an element 1’ € R such that 1'r = r or all » € R, then in
particular 1’ = 1. But 1’l = 1’ since 1 is a multiplicative identity element, so
1"=1 [

Proposition 7.2.3. For any r in a ring R, its additive inverse —r is unique. That
is, ifr+1r' ' =r+1r"=0, thenr' =1r".

If r has a multiplicative inverse, then it is also unique. That is, if rr’ = 1 = r'r
and rr" =1 =1r"r, thenr' = r".

Proposition 7.2.4. For all elements r in a ring R, we have Or = r0 = (.
Proof. By distributive laws,
Or = (04 0)r =0r+0r
Adding —0r (additive inverse of Or) to both sides, we have:
0= (0r+0r)+ (—0r) = 0r + (0r + (=0r)) = 0r + 0 = Or.
The proof of 70 = 0 is similar and we leave it as an exercise. ]

Proposition 7.2.5. For all elements r in a ring, we have (—1)(—r) = (—r)(—1) =
r.

Proof. We have:
0= 0(=r) = (14 (~1)(=r) = —r + (~1)(~r).
Adding r to both sides, we obtain
r=r+(=r+(=0(=r) =+ -r)+ (=D(=r) = (=1)(=n).
We leave it as an exercise to show that (—r)(—1) = 7. O
Proposition 7.2.6. For all r in a ring R, we have: (—1)r = r(—1) = —r
Proof. Exercise O

Proposition 7.2.7. If R is a ring in which 1 = 0, then R = {0}. That is, it has
only one element.

We call such an R the zero ring.
Proof. Exercise. ]

Definition. A ring R is said to be commutative if ab = ba for all ab € R.
Example 7.2.8. e 7Z,Q, R, C are all commutative rings, so are Z[x], Q[z],
Rlz], Clx].

e For a fixed natural number n > 1, the ring of n X n matrices with integer
coefficients, under the usual operations of addition and multiplication, is not
commutative.
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Modulo m arithmetic

Example 7.2.9. Let m be a positive integer. Consider the set
L ={0,1,2,...,m — 1}.

For any integer n € 7Z, we denote by 7 the remainder of the division of of n by
m:m=mq-+r.

On the other hand, two integers a, b € Z are said to be congruent modulo m,
denoted as a = b mod m, if m | (a — b). This defines an equivalence relation
on Z, and Z,, can be regarded as parametrizing the equivalence classes, namely,
every a € Z is congruent modulo m to exactly one element in Z,,.

Remark. Congruence modulo m is exactly the same as the relation defined by
the subgroup mZ < Z, so the above partition is the same as that given by cosets
of mZ in Z.

We equip Z,,, with addition +,,, and multiplication -,,, defined as follows: For
a,b e Z,,, let:

where the addition and multiplication on the right are the usual addition and mul-
tiplication for integers.

Proposition 7.2.10. With addition and multiplication thus defined, Z,, is a com-
mutative ring.

Proof. 1. We already know that (Z,,, +,,) is an abelian group.

2. Note that If a = ¢ mod m and b = ¥ mod m, then ab = &'’ mod m.
So for ry,ry € Z,,, we have

TiTg =119 =T -T9 =77 T mod m.

For a,b, c € Z,,, we have:

So, -, 1S associative.
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3. Exercise: We can take 1 to be the multiplicative identity.
4. Fora,b € Zy,,aub=a-b=0b-a=">0-,, a. So -,, is commutative.

5. Lastly, we need to prove distributivity. For a, b, ¢ € Z,,, we have:

@ (b+me) =a-b+c=a-(b+c) =ab+ ac = ab+ ac = a-pb+pa-pc.

It now follows from the distributivity from the left, proven above, and the
commutativity for -,,, that distributivity from the right also holds:

(a+mb) mec=a-mc+bo,c
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